US ERA ARCHIVE DOCUMENT

Using advanced statistical techniques to identify the drivers and occurrence of historical and future extreme air quality events in the United States from observations and models

Colette L. Heald

Daniel Cooley

Brian Reich

Alma Hodzic Eric Gilleland Barbara Brown

AIR QUALITY

Majority of Air Quality Projections Focus on Means

Annual Changes in PM_{2.5} Chemical Speciation

[Val Martin et al., in prep]

What About the Extremes?

Increasing Regional Stagnation (and AQ Events) with Climate Change

GISS GCM simulations for 2050 vs. presentday climate using pollution tracers with constant emissions

Climate Penalty: Changes in summer 8-h avg. daily maximum ozone from 2000-2050 climate change

Pollution episodes double in duration in 2050 due to decreasing frequency of cyclones ventilating the eastern U.S; expected result of climate change.

We Are Now Observing Evidence of Extreme AQ Events: Summer 2010 Fires in Russia

(links between air quality and climate change)

Drought + worst heatwave seen in Russia in 130 years:

600+ fires
2000 homes destroyed
[CO] in Moscow 4x normal
55,000+ estimated deaths from smog
and heatwave

Bark Beetle Kill in Western US Raising Fire Susceptibility?

(links between climate change, land use and air quality)

High Park fire in Colorado (June 2012) burned in area of 70% beetle-killed trees

Even Our Attempts to Characterize the Growing Importance of Sporadic Events (eg. Fires) relies on Means

Projected annual total biomass burned

Increased area burned results in ~150% increase in BC and OC fire emissions

Future PM_{2.5} may stay constant over western US due to increased fire activity.

Yue et al, in review JGR

Changes in summer PM_{2.5} from fires alone

Chemistry-Climate Model Evaluation Relies on Means

Annual Average CESM Evaluation with IMPROVE observations (1998-2010)

Right for the right reason?

Relationship between meteorology & air quality, particularly at the extremes, is largely untested.

SENSITIVITY OF SURFACE AIR QUALITY TO METEOROLOGICAL VARIABLES

Insights into the effect of climate change on air quality

Expected 21 st century climate change		Ozone	PM (aerosol)
	Stagnation		
	Temperature		11
?	Mixing depth	=	
?	Precipitation	=	
?	Cloud cover		
?	Humidity	=	11

Climate change is expected to degrade ozone air quality; Tai et al. [2010] showed that impacts of climate on PM are complex and uncertain.

Extreme Value Analysis for Evaluating Ozone Control Strategies

Model Calibration

Probability of non-compliance with ozone standard

Developed a reduced form model (RFM) to approximate CMAQ O_3 , calibrate model with AQS observations (using QR + EVT) and then evaluate control strategies using RFM.

This Project: Develop Sophisticated Statistics Approach to Identifying & Testing Drivers of AQ Extremes

OBJECTIVES:

1. Develop/apply new statistical approaches for investigating drivers of extreme AQ/exceedances.

2. Analyse 10+ year observational record of O₃ and PM_{2.5} in the US to quantify the joint & conditional probability of extreme air quality events & exceedances.

 Apply the same analysis to regional and global chemistryclimate simulations for present-day to investigate how well these extremes, exceedances, and driving relationships are represented.

4. Forecast AQ extremes based on projected climate and observed historical relationships.

The Tools: Stats, Data and 3D Models

Quantile Regression (QR)

Extreme Value Theory (EVT)

Spatial Data Analysis

Surface O₃ Observations EPA AIRS (1979-2010)

Surface PM_{2.5} Observations EPA AIRS + IMPROVE (1999-2010)

Meteorological Data NCEP NARR (~32 km) (1979-2010)

GLOBAL:

Community Earth System Model (CESM), coupled gas-aerosol chemistry (CAM-Chem), modal aerosols (MAM), specified (GEOS-5) or free-running dynamics, 1.9 x2.5 resolution

REGIONAL:

NCAR Weather Research Forecasting model with online chemistry (WRF-Chem), several chemical mechanisms, 36 km resolution

The Team: Bridging Expertise

Timeline of Activities

YEAR 1 (Jul 2012) YEAR 2 (Jul 2013) YEAR 3 (Jul 2014) END (Jun 2015)

- Theory Development
- Data Mining (O₃/PM) for both EVT & QR
- Develop framework for spatial modeling of extremes

- Analysis of US-wide observations of AQ extremes for several decades (EVT & QR)
- Characterize coherent observed relationships

- Perform series of regional & global present-day chemistry-climate simulations
- Apply extremes analysis framework to simulation.
- Verification & calibration of response
- Perform regional & global 2100 chemistry-climate simulations

- Characterize future simulated AQ extremes
- Apply historical AQ extremes predictors to future simulated climate